USN						
			3 3	Commence of		Ø == -17

17MAT41

Fourth Semester B.E. Degree Examination, June/July 2023 Engineering Mathematics – IV

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Find the value of y at x = 0.1 and 0.2 from $\frac{dy}{dx} = x^2y 1$, y(0) = 1 upto third degree term by using Taylor's series method. (06 Marks)
 - b. Using the modified Euler's method, solve the initial value problem $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1 at the point x = 0.1. Take h = 0.1 and carryout two iterations. (07 Marks)
 - c. Solve the differential equation $\frac{dy}{dx} = x y^2$ at x = 0.8 by using Adam Bashforth method, given that y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795 and y(0.6) = 0.1762. Apply corrector twice. (07 Marks)

OR

- 2 a. Find the approximate solution of $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0 at the points x = 0.1 and x = 0.2 by using Taylor's series method. (06 Marks)
 - b. Using Runge Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2 by taking h = 0.2.
 - c. If $y' = 2e^x y$, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040 and y(0.3) = 2.090, find y(0.4) using Milne's predictor corrector formula. Apply corrector formula twice. (07 Marks)

Module-2

3 a. Obtain the solution of the equation: $2\frac{d^2y}{dx^2} = 4x + \frac{dy}{dx}$ by computing the values of the dependent variable corresponding to the value x = 1.4 of the independent variable by applying Milne's method using the following data:

X	1	1.1	1.2	1.3
у	2	2.2156	2.4649	2.7514
v'	2	2.3178	2.6725	3.0657

(07 Marks)

- b. If $x^3 + 2x^2 4x + 5 = aP_0(x) + bP_1(x) + cP_2(x) + dP_3(x)$, find a, b, c, d.
- (07 Marks)
- c. If α and β are two distinct roots of $J_n(x) = 0$, then prove that $\int_0^1 x J_n(\alpha x) J_n(\beta x) dx = 0$ if $\alpha \neq \beta$.

(06 Marks)

OR

- 4 a. Using the Runge Kutta method, find y(0.2) and y'(0.2), given that y satisfies the differential equation $\frac{d^2y}{dx^2} = x\left(\frac{dy}{dx}\right)^2 y^2$ and the initial conditions y(0) = 1, y'(0) = 0, h = 0.2. (07 Marks)
 - b. Prove the Rodrigues' formula: $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$. (07 Marks)
 - c. Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$. (06 Marks)

Module-3

5 a. Derive Cauchy - Riemann equations in polar form.

(07 Marks)

- b. By using Cauchy's Residue theorem, evaluate the integral $\int_C \frac{z^2}{(z-1)^2(z+2)} dz$ where C is the circle $|z| = \frac{5}{2}$. (07 Marks)
- c. Find the bilinear transformation which maps z = -1, i, 1 into w = 1, i, -1, respectively.

 (06 Marks)

OR

- 6 a. Find the analytic function f(z) = u + i v in terms of z whose imaginary part is $e^{x}[(x^{2} y^{2})\cos y 2xy\sin y]$. (07 Marks)
 - b. State and prove Cauchy's integral formula. (07 Marks)
 - c. Discuss the transformation $w = z^2$. (06 Marks)

Module-4

- 7 a. Derive the expressions for mean and variance of binomial distribution. (07 Marks)
 - b. The mean weight of 500 students at a certain school is 50kgs and the standard deviation is 6kgs. Assuming that the weights are normally distributed, find the expected number of students weighing:
 - i) between 40 and 50kgs.
 - ii) more than 60 kgs, given that A(1.6667) = 0.4525. (07 Marks)
 - c. Alpha particles are emitted by a radioactive source at an average rate of 5 in a 20 minutes interval. Using Poisson distribution, find the probability that there will be:
 - i) Exactly two emissions
 - ii) At least two emissions, in a randomly chosen 20 minutes interval. (06 Marks)

OR

8 a. The probability density function P(x) of a variate X is given by the following table:

x	-2	-1	0	1	2 .	3 🗸
P(x)	0.1	K	0.2	2K	0.3	K

Determine the value of K and find the mean, variance and standard deviation. Also find $P(-1 < x \le 2)$. (07 Marks)

- b. In a certain town the duration of a shower is exponentially distributed with mean equal to 5 minutes. What is the probability that a shower will last for:
 - i) Less than 10 minutes
 - ii) 10 minutes or more?

(07 Marks)

c. The joint probability distribution of two random variables X and Y is given. Find the marginal distribution of X and Y and evaluate cov(x, y) and $\rho(x, y)$.

X	1	3	9
20	1/8	1/24	1/12
4	1/4	1/4	0
6	1/8	1/24	1/12

(06 Marks)

Module-5

- 9 a. Results extracts revealed that in a certain school, over a period of 5 years, 725 students had passed and 615 students had failed. Test whether success and failure are in equal proportion. (06 Marks)
 - b. Two types of batteries are tested for their length of life and the following results are obtained

Battery	\mathbf{n}_1	$\overline{x_1}$	σ^2
A	10	560 hrs	100
В	10	500 hrs	121

Test whether there is a significant difference in two means. (Given $t_{0.05} = 2.101$ for 18 df). (07 Marks)

c. Find the fixed probability vector of the regular stochastic matrix :

$$\mathbf{A} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}.$$

(07 Marks)

OR

- 10 a. Define:
 - i) Null hypothesis
 - ii) Significance level

iii) Type I and Type II errors.

(06 Marks)

b. The number of accidents per day (x) over a period of 400 days is given below. Test Poisson distribution is a good fit or not. $(\chi_{0.03}^2 = 9.49 \text{ for } 4d.f)$.

x	0	1	2	3	40	5
f	173	168	37	18 <	3	1

(07 Marks)

c. A student's study habits are as follows. If he studies one night, he is 70% sure not to study the next night. On the other hand, if he does not study one night, he is 60% sure not to study the next night. In the long run, how often does he study?

(07 Marks)